Logistic Regression 1 The basics

Michael Claudius, Associate Professor, Roskilde

31.03.2020 Revised 18.10.2020

Sjællands Erðvervsakademi

What is logistic regression?

- A *predicative* algorithm for classification
- Based on probability (p), a number
 - in percent: $0\% \le p \le 100\%$;
 - in decimal: $0 \le p \le 1$
- Binary classification OR
- Multiple classes (multinomial)
- Give you a minute!
- Toss a coin. What is the probability of heads and tails (plat eller krone)?
- Throw a dice. What is the probability for a 6?
- Throw two dice a red and a green.
- So its predicting something; lets look at that !

Evaluation of logistic regression?

- Advantages
 - Also good for small data sets!
 - White box; knows in details how it works
 - Easy
- Disadvantages
 - Not good for big data, too slow
 - Wrong estimates for messy data, outliers
 - No missing data
 - Variables (features) must be independent

Prediction

- Prediction, y, of an instance X (X can be one feature (X₁) or many features (vector, X₁, X₂, ..., X_n))
 - $p \ge 0.5 \Rightarrow y = 1$ (X is an instance of a positive class)
 - $p < 0.5 \Rightarrow y = 0$ (X is an instance of a negative class)
- Notice: logistic regression is predicting just 0 or 1; not a range of values (BAM)
- Let us watch an easy video introduction Logistic Regression Introduction (8 minutes)
- Before the hard stuff

Estimation elements

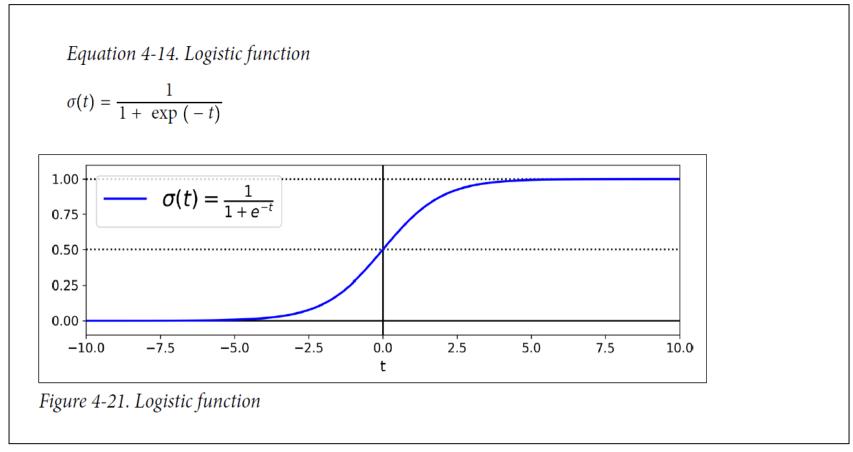
It is all math ©; that's it looks complicated so just keep it simple!

Equation 4-13. Logistic Regression model estimated probability (vectorized form)

 $\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta})$

- p: estimated probability
- h: hypothesis function based on θ : h_{θ}
- X: feature vector or just feature values X_1, X_2, \dots, X_n
- θ : parameter vector weights on features (θ_0 , θ_1 , θ_2 ,, θ_n)
- X^T: transposed vector (columns changed to rows)
- $X^T\theta$: matrix multiplication (like linear regression $\theta_0 + X_1\theta_1 + X_2\theta_2 \dots + X_n\theta_n$
- σ: the famous sigmoid function !

Sigmoid function



σ(t): values 0 – 1 !

Zealand

- Idea: to train the model (i.e. changing parameters θ_0 , θ_1 , θ_2 ,, θ_n)
- Goal: p is high for instance of positive class and low for instances of negative class
- So need a cost function $c(\theta_0, \theta_1, \theta_2, \dots, \theta_n)$ fulfilling:
 - Cost is high for wrong estimation (false)
 - a. Guess 0 for a positive class
 - b. Guess 1 for a negative class
 - Cost is low for correct estimation (true)
 - a. Guess 1 for a positive class
 - b. Guess 0 for a negative class
 - And yes it exists! We are lucky.

Cost function

• This function for a single training instance fulfills the requirements

Equation 4-16. Cost function of a single training instance $c(\mathbf{\theta}) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1\\ -\log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$

- c: cost function
- θ : parameter vector weights on features ($\theta_0, \theta_1, \theta_2, \dots, \theta_n$)
- p: estimated probability
- But of course there are many instances, so we need an average of summation...

Average cost function

• But of course there are many instances, so we need an average of summation of the whole training set

Equation 4-17. Logistic Regression cost function (log loss)
$$J(\mathbf{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(\hat{p}^{(i)}) + \left(1 - y^{(i)}\right) log\left(1 - \hat{p}^{(i)}\right) \right]$$

- J(θ): parameter vector weights on features (θ_0 , θ_1 , θ_2 ,, θ_n)
- How to find the best set ?
- No Normal Equation !
- BUT Again we are lucky..

Partial derivative of average cost function

• Why Lucky?, because $J(\theta)$ is convex and differentiable

Equation 4-18. Logistic cost function partial derivatives

$$\frac{\partial}{\partial \theta_j} \mathbf{J}(\mathbf{\theta}) = \frac{1}{m} \sum_{i=1}^m \left(\sigma(\mathbf{\theta}^{\mathsf{T}} \mathbf{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

- That's it has a global minimum and then
- We can find the parameters (θ_0 , θ_1 , θ_2 ,, θ_n) using Batch Gradient Algorithm ! (BAM)

Zealand

Assignments

- It is time for discussion and solving a few assignments in groups
 - Logistic Regression Questions

